Skip to Content

Calculus 2: Trigonometric substitution

x225xdx \displaystyle \int \frac{\sqrt{x^2-25}}{x} \, dx with x=5secθx = 5 \sec \theta

3x2dx\displaystyle \int \sqrt{3 - x^2} \, dx

Evaluate the definite integral from 44 to 434\sqrt{3} of 1x2x2+16dx\frac{1}{x^2 \sqrt{x^2 + 16}} \, dx.

Integrate 1tan2θsecθsec2θdθ\frac{1}{\tan^2 \theta} \cdot \sec \theta \cdot \sec^2 \theta \, d\theta by rewriting the expression in terms of sines and cosines and using a trigonometric substitution.

Solve the integral of dxx29\frac{dx}{\sqrt{x^2 - 9}}.

Evaluate sec3θdθ \displaystyle \int \sec^3 \theta \, d\theta using trig substitution where x=tan(θ)x = \tan(\theta).

Evaluate the integral of the square root of 1x21-x^2 using trigonometric substitution.

For the integral a2x2\displaystyle \sqrt{a^2-x^2}, make the trigonometric substitution x=asinθx=a\sin\theta and find the differential dx=acosθdθdx=a\cos\theta\,d\theta.

Evaluate the integral of the form dxx2a2 \displaystyle \int \frac{dx}{\sqrt{x^2 - a^2}} by making the substitution x=asecθx = a \sec\theta.

Convert x=secθx = \sec\theta back in terms of xx using a right triangle and basic SOHCAHTOA.

For a radical x21\sqrt{x^2 - 1}, use trigonometric substitution and translate sinθ\sin\theta back to xx in the problem solved.

Integrate using sine substitution where the substitution is x=6sin(θ)x = 6 \sin(\theta).

Integrate using trig substitution when you have both a radical expression in the numerator and a coefficient on the x2x^2 term.

Using tangent substitution, where 5x=2tan(θ)5x=2\tan(\theta), solve an integral with a coefficient on x2x^2.

Using secant substitution, where x=4sec(θ)x = 4 \sec(\theta), solve an integral with a rational power, such as a fractional power of three halves.

Evaluate the integral using trigonometric substitution: 1x2dx\displaystyle \int \sqrt{1-x^2} \, dx.

Using a secant substitution, simplify and integrate 1xx24\frac{1}{x \sqrt{x^2 - 4}}.

Solve the integral using trigonometric substitution where the square root involves 1sin2(x)1 - \sin^2(x).

Simplify the integral 116x2dx\displaystyle \, \int \frac{1}{\sqrt{16 - x^2}} \, dx using the substitution x=4sinθx = 4 \sin \theta.

Simplify the integral 19x2dx\displaystyle \int \frac{1}{\sqrt{9 - x^2}} \, dx using the substitution x=3sinθx = 3 \sin \theta.