Skip to Content

Calculus 2: Trigonometric substitution

Integrate 9x2x2dx\frac{\sqrt{9-x^2}}{x^2} \, dx using trigonometric substitution.

Integrate 1x2x2+4dx\frac{1}{x^2 \sqrt{x^2 + 4}} \, dx using trigonometric substitution.

Simplify and integrate the expression (x2+9)3/2(x^2 + 9)^{3/2} using trigonometric substitution where x=3tan(θ)x = 3\tan(\theta).

Evaluate the integral dtt2+9\displaystyle \int \frac{dt}{t^2 + 9} using trigonometric substitution.

Integrate the square root of 2x22-x^2 over x2x^2.

Integrate 1x9x2\displaystyle \frac{1}{x \sqrt{9-x^2}}.

Integrate 4x2x2\frac{\sqrt{4-x^2}}{x^2} using trigonometric substitution.

Find the indefinite integral of x3x2+9dx\displaystyle \int \frac{x^3}{\sqrt{x^2 + 9}} \, dx using trigonometric substitution.

Perform the trigonometric substitution for the integral involving 1+x2\sqrt{1 + x^2}.

Perform the substitution u=x+1u = x + 1 and express the integral 1(x+1)25dx\displaystyle \int \sqrt{1 - (x + 1)^2}^5 \, dx in terms of uu.

Using a triangle, identify the trigonometric substitution for evaluating the integral involving 9x2\sqrt{9 - x^2} and carry out the integration.

Find the integral of the function from 11 to 33 for 1(1+x2)3\frac{1}{(\sqrt{1 + x^2})^3} using trigonometric substitution and outline the process.

Perform the trigonometric substitution for the integral involving x24\sqrt{x^2 - 4}.

Using a triangle, identify the trigonometric substitution for the problem involving x=2θx = 2 \theta and integrate.

Set up a right triangle based on the expression 4x24-x^2 to use trigonometric substitution for integration, identifying which side represents the hypotenuse.

Simplify the integral using trigonometric substitution and express the result back in terms of xx.

Evaluate the integral x39x2dx\displaystyle \int x^3 \sqrt{9 - x^2} \, dx using trigonometric substitution.

Evaluate the integral 12x21xdx \displaystyle \int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x} \, dx.