Skip to Content

Calculus 2

cos4(5x)dx\displaystyle \int cos^4(5x)\, dx

The first-quadrant area is bounded by the curve y2=4xy^2 = 4x, the x axis, and the line x = 4 is rotated about the y axis. Find the volume generated: (a) By the ring method (b) By the shell method

tan3xsec2xdx\displaystyle \int \frac{tan^3x}{sec^2x} \, dx

Evaluate x2cos(x)dx\int x^2 \, cos(x) \, dx

Use the disk method to find the volume of the solid of rotation by rotating the bounded area around the y-axis

y=2x2y = 2x^2, y=0y = 0, x=2x = 2

tan3xsec3xdx\displaystyle \int tan^3x \, sec^3x \, dx

Compute xe5xdx\int xe^{5x}dx and π/4π/3cos(x)ln(sin(x))dx\displaystyle \int_{\pi/4}^{\pi/3} cos(x) ln(sin(x)) \, dx

Given x3=y5+2x^3 = y^5 + 2, find the arc length from y=1y = 1 to y=3y = 3 and the surface area when the arc is rotated about the x-axis.

Integrate 9x2x2dx\frac{\sqrt{9-x^2}}{x^2} \, dx using trigonometric substitution.

Integrate 1x2x2+4dx\frac{1}{x^2 \sqrt{x^2 + 4}} \, dx using trigonometric substitution.

Simplify and integrate the expression (x2+9)3/2(x^2 + 9)^{3/2} using trigonometric substitution where x=3tan(θ)x = 3\tan(\theta).

Evaluate the integral dtt2+9\displaystyle \int \frac{dt}{t^2 + 9} using trigonometric substitution.

Integrate the square root of 2x22-x^2 over x2x^2.

Integrate 1x9x2\displaystyle \frac{1}{x \sqrt{9-x^2}}.

Integrate 4x2x2\frac{\sqrt{4-x^2}}{x^2} using trigonometric substitution.

Find the indefinite integral of x3x2+9dx\displaystyle \int \frac{x^3}{\sqrt{x^2 + 9}} \, dx using trigonometric substitution.

Perform the substitution u=x+1u = x + 1 and express the integral 1(x+1)25dx\displaystyle \int \sqrt{1 - (x + 1)^2}^5 \, dx in terms of uu.

Perform the trigonometric substitution for the integral involving 1+x2\sqrt{1 + x^2}.