Skip to Content

Calculus 2

sin2xdx\displaystyle \int sin^2x\, dx

Determine the volume of the solid generated by rotating the function about the x-axis on [0,3][0,3]

y=9x2y = \sqrt{9 - x^2}

Evaluate xsin(x)dx\int x \, sin(x) \, dx

sin3xcos4x, dx\displaystyle \int sin^3x \, cos^4x ,\ dx

Evaluate x4ln3xdx\int x^4 \, ln \, 3x \, dx

cos3xdx\displaystyle \int cos^3x \, dx

Determine the volume of the solid generated by rotating the function about the y-axis on [0,4][0,4]

y=xy = \sqrt{x}

Evaluate 5xe2xdx\displaystyle \int \frac{5x}{e^{2x}} \, dx

Use the shell method to determine the volume formed by the bounded region rotated about the x-axis.

y=x2y = x^2, y=0y = 0, x=2x = 2

Use the shell method to determine the volume of the solid formed by rotating the region about the y axis.

y=x2+2y = x^2 + 2

y=0y = 0, x=0x = 0, x=2x = 2

Find the area enclosed by x2+y2=r2x^2 + y^2 = r^2.

Complete the square for the expression x22x+3x^2 - 2x + 3 and rewrite it in the form ab2a - b^2.

Evaluate the integral 8152u2du8 \displaystyle \int_{1}^{\frac{\sqrt{5}}{2}} u^2 \, du.

Evaluate the integral from 0 to 2 of 02(5x42x)dx \displaystyle \int_{0}^{2} (5x^4 - 2x) \, dx using the fundamental theorem of calculus Part 2.

Convert x=secθx = \sec\theta back in terms of xx using a right triangle and basic SOHCAHTOA.

Evaluate 03e2xdx \displaystyle \int_{0}^{3} e^{2x} \, dx using the uu-substitution method, where u=2xu = 2x.

Calculate the definite integral of sec2(θ)1\sec^2(\theta) - 1 from θ=0\theta = 0 to θ=π6\theta = \frac{\pi}{6}.

Using parameterization, find the coordinates of a point on the unit circle given an angle θ\theta.