Skip to Content

Calculus 2: Improper integrals

Determine the location of the center of mass of a rod with density 1(x2+9)3/2\frac{1}{(x^2 + 9)^{3/2}} where xx goes from 0 to 4.

Evaluate the integral from 1 to infinity of 11xdx\displaystyle \int_{1}^{\infty} \frac{1}{x} \, dx and determine if it is convergent or divergent.

Integrate 1x2\frac{1}{x^2} from 1 to infinity and determine if it is convergent or divergent.

Determine if the integral of 1(3x+1)2dx\displaystyle \int \frac{1}{(3x + 1)^2} \, dx is convergent or divergent.

Evaluate the improper integral 11x2dx\displaystyle \int_{1}^{\infty} \frac{1}{x^2} \, dx.

Evaluate limB1B1xdx\lim_{{B \to \infty}} \displaystyle \int_{{1}}^{{B}} \frac{1}{x} \, dx.

Evaluate the limit limB1B1xndx\lim_{{B \to \infty}} \int_{{1}}^{{B}} \frac{1}{x^n} \, dx for any power nn.

Evaluate the integral 1e2xdx\displaystyle \int_{1}^{\infty} e^{-2x} \, dx.

Evaluate limB0Bcosxdx\displaystyle \lim_{{B \to \infty}} \int_{{0}}^{{B}} \cos x \, dx.

Evaluate limaa0exdx\lim_{{a \to -\infty}} \int_{{a}}^{{0}} e^x \, dx using integration by parts.

Evaluate the integral ex2dx \displaystyle \int_{-\infty}^{\infty} e^{x^2} \, dx.

Evaluate the integral 091xdx \displaystyle \int_{0}^{9} \frac{1}{\sqrt{x}} \, dx .

Evaluate the integral C9x2dx\displaystyle \int_{C}^{9} x^2 \, dx as C0+C \to 0^+.

Evaluate the integral 01lnxdx\displaystyle \int_{0}^{1} \ln x \, dx using integration by parts and limits as the variable approaches zero from the right.

Evaluate the integral 0f(x)dx \int_{0}^{\infty} f(x) \, dx by breaking it into 01f(x)dx \int_{0}^{1} f(x) \, dx and 1f(x)dx \int_{1}^{\infty} f(x) \, dx, addressing the infinite interval and discontinuity at zero.

Evaluate the integral from 11 to \infty of 1x+sin2xdx\frac{1}{x} + \sin^2 x \, dx.

Determine if the integral 111+xdx\displaystyle \int_{1}^{\infty} \frac{1}{1+x} \, dx is convergent or divergent using the comparison test.

Determine whether the integral from negative infinity to 1 of 12x5dx\frac{1}{2x-5} \, dx is convergent or divergent and evaluate it if it is convergent.

Determine whether the integral from 0 to infinity of 0x(x2+2)2dx\displaystyle \int_{0}^{\infty} \frac{x}{(x^2+2)^2} \, dx is convergent or divergent and evaluate it if it is convergent.

Determine whether the integral from negative infinity to infinity of (2v4)dv \displaystyle \int_{-\infty}^{\infty} (2 - v^4) \, dv is convergent or divergent and evaluate if possible.