Skip to Content

Calculus 2

Evaluate xsin(x)dx\int x \, sin(x) \, dx

sin2xdx\displaystyle \int sin^2x\, dx

cos4(5x)dx\displaystyle \int cos^4(5x)\, dx

Compute xe5xdx\int xe^{5x}dx and π/4π/3cos(x)ln(sin(x))dx\displaystyle \int_{\pi/4}^{\pi/3} cos(x) ln(sin(x)) \, dx

Evaluate 5xe2xdx\displaystyle \int \frac{5x}{e^{2x}} \, dx

Evaluate tan1xdx\displaystyle \int tan^{-1} \, \sqrt{x} \, dx

Determine the volume of the solid generated by rotating the function about the y-axis on [0,4][0,4]

y=xy = \sqrt{x}

cos3xdx\displaystyle \int cos^3x \, dx

Evaluate sin(1x)x3dx\displaystyle \int \frac{sin(\frac{1}{x})}{x^3} \, dx

Evaluate x4ln3xdx\int x^4 \, ln \, 3x \, dx

sin3xcos4x, dx\displaystyle \int sin^3x \, cos^4x ,\ dx

tan3xsec2xdx\displaystyle \int \frac{tan^3x}{sec^2x} \, dx

Determine the volume of the solid generated by rotating the function about the x-axis on [0,3][0,3]

y=9x2y = \sqrt{9 - x^2}

tan3xsec3xdx\displaystyle \int tan^3x \, sec^3x \, dx

Evaluateecos1xdx\displaystyle \int e^{cos^{-1}x}\, dx

Use the disk method to find the volume of the solid of rotation by rotating the bounded area around the y-axis

y=2x2y = 2x^2, y=0y = 0, x=2x = 2

Evaluate x2cos(x)dx\int x^2 \, cos(x) \, dx

Evaluate xsin1x1x2dx\displaystyle \int \frac{x \, sin^{-1}x}{\sqrt{1-x^2}} \, dx

Use the shell method to determine the volume formed by the bounded region rotated about the x-axis.

y=x2y = x^2, y=0y = 0, x=2x = 2

Use the shell method to determine the volume of the solid formed by rotating the region about the y axis.

y=x2+2y = x^2 + 2

y=0y = 0, x=0x = 0, x=2x = 2