Evaluate ∫ x 4 l n 3 x d x \int x^4 \, ln \, 3x \, dx ∫ x 4 l n 3 x d x
Determine the volume of the solid generated by rotating the function about the y-axis on [ 0 , 4 ] [0,4] [ 0 , 4 ]
y = x y = \sqrt{x} y = x
Determine the volume of the solid generated by rotating the function about the x-axis on [ 0 , 3 ] [0,3] [ 0 , 3 ]
y = 9 − x 2 y = \sqrt{9 - x^2} y = 9 − x 2
Use the disk method to find the volume of the solid of rotation by rotating the bounded area around the y-axis
y = 2 x 2 y = 2x^2 y = 2 x 2 , y = 0 y = 0 y = 0 , x = 2 x = 2 x = 2
Use the shell method to determine the volume formed by the bounded region rotated about the x-axis.
y = x 2 y = x^2 y = x 2 , y = 0 y = 0 y = 0 , x = 2 x = 2 x = 2
Use the shell method to determine the volume of the solid formed by rotating the region about the y axis.
y = x 2 + 2 y = x^2 + 2 y = x 2 + 2
y = 0 y = 0 y = 0 , x = 0 x = 0 x = 0 , x = 2 x = 2 x = 2
The first-quadrant area is bounded by the curve y 2 = 4 x y^2 = 4x y 2 = 4 x , the x axis, and the line x = 4 is rotated about the y axis. Find the volume generated:
(a) By the ring method
(b) By the shell method
Compute ∫ x e 5 x d x \int xe^{5x}dx ∫ x e 5 x d x and ∫ π / 4 π / 3 c o s ( x ) l n ( s i n ( x ) ) d x \displaystyle \int_{\pi/4}^{\pi/3} cos(x) ln(sin(x)) \, dx ∫ π /4 π /3 cos ( x ) l n ( s in ( x )) d x
Evaluate ∫ 5 x e 2 x d x \displaystyle \int \frac{5x}{e^{2x}} \, dx ∫ e 2 x 5 x d x
Evaluate ∫ t a n − 1 x d x \displaystyle \int tan^{-1} \, \sqrt{x} \, dx ∫ t a n − 1 x d x
Evaluate ∫ s i n ( 1 x ) x 3 d x \displaystyle \int \frac{sin(\frac{1}{x})}{x^3} \, dx ∫ x 3 s in ( x 1 ) d x
∫ t a n 3 x s e c 2 x d x \displaystyle \int \frac{tan^3x}{sec^2x} \, dx ∫ se c 2 x t a n 3 x d x
Evaluate ∫ x s i n ( x ) d x \int x \, sin(x) \, dx ∫ x s in ( x ) d x
Evaluate ∫ x 2 c o s ( x ) d x \int x^2 \, cos(x) \, dx ∫ x 2 cos ( x ) d x
∫ s i n 2 x d x \displaystyle \int sin^2x\, dx ∫ s i n 2 x d x
∫ c o s 4 ( 5 x ) d x \displaystyle \int cos^4(5x)\, dx ∫ co s 4 ( 5 x ) d x
∫ c o s 3 x d x \displaystyle \int cos^3x \, dx ∫ co s 3 x d x
∫ s i n 3 x c o s 4 x , d x \displaystyle \int sin^3x \, cos^4x ,\ dx ∫ s i n 3 x co s 4 x , d x
∫ t a n 3 x s e c 3 x d x \displaystyle \int tan^3x \, sec^3x \, dx ∫ t a n 3 x se c 3 x d x
Evaluate∫ e c o s − 1 x d x \displaystyle \int e^{cos^{-1}x}\, dx ∫ e co s − 1 x d x