Set up a right triangle based on the expression 4 − x 2 4-x^2 4 − x 2 to use trigonometric substitution for integration, identifying which side represents the hypotenuse.
Simplify the integral using trigonometric substitution and express the result back in terms of x x x .
Evaluate the integral ∫ x 3 9 − x 2 d x \displaystyle \int x^3 \sqrt{9 - x^2} \, dx ∫ x 3 9 − x 2 d x using trigonometric substitution.
Evaluate the integral 8 ∫ 1 5 2 u 2 d u 8 \displaystyle \int_{1}^{\frac{\sqrt{5}}{2}} u^2 \, du 8 ∫ 1 2 5 u 2 d u .
Evaluate the integral ∫ 1 2 x 2 − 1 x d x
\displaystyle \int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x} \, dx ∫ 1 2 x x 2 − 1 d x .
Evaluate the integral ∫ 0 π / 2 cos t 1 + sin 2 t d t \displaystyle \int_{0}^{\pi/2} \frac{\cos t}{\sqrt{1 + \sin^2 t}} \, dt ∫ 0 π /2 1 + sin 2 t cos t d t .
∫ x 2 − 25 x d x
\displaystyle \int
\frac{\sqrt{x^2-25}}{x} \, dx ∫ x x 2 − 25 d x with x = 5 sec θ x = 5 \sec \theta x = 5 sec θ
∫ 3 − x 2 d x \displaystyle \int \sqrt{3 - x^2} \, dx ∫ 3 − x 2 d x
Evaluate the definite integral from 4 4 4 to 4 3 4\sqrt{3} 4 3 of 1 x 2 x 2 + 16 d x \frac{1}{x^2 \sqrt{x^2 + 16}} \, dx x 2 x 2 + 16 1 d x .
Integrate 1 tan 2 θ ⋅ sec θ ⋅ sec 2 θ d θ \frac{1}{\tan^2 \theta} \cdot \sec \theta \cdot \sec^2 \theta \, d\theta t a n 2 θ 1 ⋅ sec θ ⋅ sec 2 θ d θ by rewriting the expression in terms of sines and cosines and using a trigonometric substitution.
Find the anti-derivative of x − 9 x 2 + 3 x − 10 \frac{x - 9}{x^2 + 3x - 10} x 2 + 3 x − 10 x − 9 using partial fractions.
Evaluate the integral from 0 to 2 of ∫ 0 2 ( 5 x 4 − 2 x ) d x
\displaystyle \int_{0}^{2} (5x^4 - 2x) \, dx ∫ 0 2 ( 5 x 4 − 2 x ) d x using the fundamental theorem of calculus Part 2.
Find the limit as x → 0 x \to 0 x → 0 of sin x − x x 2 \displaystyle \frac{\sin x - x}{x^2} x 2 sin x − x using L'Hôpital's Rule.
Evaluate the integral of 1 x 2 + 1 \displaystyle \frac{1}{x^2 + 1} x 2 + 1 1 using partial fractions.
Solve the integral of d x x 2 − 9 \frac{dx}{\sqrt{x^2 - 9}} x 2 − 9 d x .
Evaluate ∫ sec 3 θ d θ
\displaystyle \int \sec^3 \theta \, d\theta ∫ sec 3 θ d θ using trig substitution where x = tan ( θ ) x = \tan(\theta) x = tan ( θ ) .
Evaluate ∫ cos 2 ( θ ) d θ \displaystyle \int \cos^2(\theta) \, d\theta ∫ cos 2 ( θ ) d θ using the double angle identity.
Evaluate the integral of the square root of 1 − x 2 1-x^2 1 − x 2 using trigonometric substitution.
Evaluate the integral of 1 1 − x 2 \frac{1}{\sqrt{1-x^2}} 1 − x 2 1 which is equivalent to the inverse sine of x.
For the integral a 2 − x 2 \displaystyle \sqrt{a^2-x^2} a 2 − x 2 , make the trigonometric substitution x = a sin θ x=a\sin\theta x = a sin θ and find the differential d x = a cos θ d θ dx=a\cos\theta\,d\theta d x = a cos θ d θ .