Skip to Content

Calculus 2

Set up a right triangle based on the expression 4x24-x^2 to use trigonometric substitution for integration, identifying which side represents the hypotenuse.

Simplify the integral using trigonometric substitution and express the result back in terms of xx.

Evaluate the integral x39x2dx\displaystyle \int x^3 \sqrt{9 - x^2} \, dx using trigonometric substitution.

Evaluate the integral 8152u2du8 \displaystyle \int_{1}^{\frac{\sqrt{5}}{2}} u^2 \, du.

Evaluate the integral 12x21xdx \displaystyle \int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x} \, dx.

Evaluate the integral 0π/2cost1+sin2tdt\displaystyle \int_{0}^{\pi/2} \frac{\cos t}{\sqrt{1 + \sin^2 t}} \, dt.

x225xdx \displaystyle \int \frac{\sqrt{x^2-25}}{x} \, dx with x=5secθx = 5 \sec \theta

3x2dx\displaystyle \int \sqrt{3 - x^2} \, dx

Evaluate the definite integral from 44 to 434\sqrt{3} of 1x2x2+16dx\frac{1}{x^2 \sqrt{x^2 + 16}} \, dx.

Integrate 1tan2θsecθsec2θdθ\frac{1}{\tan^2 \theta} \cdot \sec \theta \cdot \sec^2 \theta \, d\theta by rewriting the expression in terms of sines and cosines and using a trigonometric substitution.

Find the anti-derivative of x9x2+3x10\frac{x - 9}{x^2 + 3x - 10} using partial fractions.

Evaluate the integral from 0 to 2 of 02(5x42x)dx \displaystyle \int_{0}^{2} (5x^4 - 2x) \, dx using the fundamental theorem of calculus Part 2.

Find the limit as x0x \to 0 of sinxxx2\displaystyle \frac{\sin x - x}{x^2} using L'Hôpital's Rule.

Evaluate the integral of 1x2+1\displaystyle \frac{1}{x^2 + 1} using partial fractions.

Solve the integral of dxx29\frac{dx}{\sqrt{x^2 - 9}}.

Evaluate sec3θdθ \displaystyle \int \sec^3 \theta \, d\theta using trig substitution where x=tan(θ)x = \tan(\theta).

Evaluate cos2(θ)dθ\displaystyle \int \cos^2(\theta) \, d\theta using the double angle identity.

Evaluate the integral of the square root of 1x21-x^2 using trigonometric substitution.

Evaluate the integral of 11x2\frac{1}{\sqrt{1-x^2}} which is equivalent to the inverse sine of x.

For the integral a2x2\displaystyle \sqrt{a^2-x^2}, make the trigonometric substitution x=asinθx=a\sin\theta and find the differential dx=acosθdθdx=a\cos\theta\,d\theta.