Integrate the integral of 1−x2x3 with respect to x.
Evaluate the integral of x25x2−4 with respect to x.
Evaluate the definite integral ∫03xx2+9dx.
Solve the integral of ∫(x+2)−3/2x+23(x2+4x)dx by completing the square and using a trigonometric substitution.
Find the area bounded by the ellipse 2x2+9y2=1.
Given the integral with a radical, use the substitution x=3sinθ to simplify 9−x2 and find the integral.
Suppose 4x2+1=sec2(θ). Use the substitution x=21tan(θ) to find the integral.
Given the integral ∫e2x9−e2xexdx, use trigonometric substitution to evaluate it.
Evaluate the integral ∫(x−3)29−(x−3)2dx.
Using the substitution x=3sec(θ), evaluate the integral ∫xx2−3dx.
Find the area of an ellipse using calculus.
Evaluate the integral ∫x29−x2dx using trigonometric substitution.
Evaluate the integral ∫x2x2+41dx using trigonometric substitution.
Evaluate the integral ∫0233(4x2+9)3/2x2dx using trigonometric substitution and solve it as a definite integral.
Using trigonometric substitution, solve the integral ∫36−x21dx.
Evaluate the integral of x2+6x1 from 1 to 2.
Evaluate the definite integral ∫0239−x21dx using trigonometric substitution.
Evaluate the integral ∫x2+2x+145dx.
Using trigonometric substitution, find the integral of x2+41 with respect to x.
Evaluate the indefinite integral of x31−4x2.