Skip to Content

Calculus 2: Trigonometric substitution

Integrate the integral of x31x2\frac{x^3}{\sqrt{1-x^2}} with respect to xx.

Evaluate the integral of 25x24x\displaystyle \frac{\sqrt{25x^2 - 4}}{x} with respect to xx.

Evaluate the definite integral 03xx2+9dx\displaystyle \int_{0}^{3} x \sqrt{x^2 + 9} \, dx.

Solve the integral of x+23(x2+4x)(x+2)3/2dx\displaystyle \int \frac{\sqrt{x+2}^3(x^2+4x)}{(x+2)^{-3/2}} \, dx by completing the square and using a trigonometric substitution.

Find the area bounded by the ellipse 2x2+9y2=12x^2 + 9y^2 = 1.

Given the integral with a radical, use the substitution x=3sinθx = 3\sin\theta to simplify 9x2\sqrt{9 - x^2} and find the integral.

Suppose 4x2+1=sec2(θ)4x^2 + 1 = \sec^2(\theta). Use the substitution x=12tan(θ)x = \frac{1}{2} \tan(\theta) to find the integral.

Given the integral exe2x9e2xdx\displaystyle \int \frac{e^x}{e^{2x} \sqrt{9 - e^{2x}}} \, dx, use trigonometric substitution to evaluate it.

Evaluate the integral dx(x3)29(x3)2 \displaystyle \int \frac{dx}{(x-3)^2 \sqrt{9 - (x-3)^2}} .

Using the substitution x=3sec(θ)x = \sqrt{3} \sec(\theta), evaluate the integral x23xdx\displaystyle \int \frac{\sqrt{x^2 - 3}}{x} \, dx.

Evaluate the integral 9x2x2dx\displaystyle \int \frac{\sqrt{9-x^2}}{x^2} \, dx using trigonometric substitution.

Evaluate the integral 1x2x2+4dx\displaystyle \int \frac{1}{x^2 \sqrt{x^2+4}} \, dx using trigonometric substitution.

Evaluate the integral 0332x2(4x2+9)3/2dx\displaystyle \int_0^{\frac{3\sqrt{3}}{2}} \frac{x^2}{(4x^2 + 9)^{3/2}} \, dx using trigonometric substitution and solve it as a definite integral.

Using trigonometric substitution, solve the integral 136x2dx \displaystyle\int \frac{1}{\sqrt{36-x^2}} \, dx.

Evaluate the integral of 1x2+6x\frac{1}{\sqrt{x^2 + 6x}} from 1 to 2.

Evaluate the definite integral 03219x2dx\displaystyle \int_0^{\frac{3}{2}} \frac{1}{\sqrt{9-x^2}} \, dx using trigonometric substitution.

Evaluate the integral dxx2+2x+145\displaystyle \int \frac{dx}{\sqrt{x^2 + 2x + 145}}.

Using trigonometric substitution, find the integral of 1x2+4\frac{1}{\sqrt{x^2 + 4}} with respect to xx.

Evaluate the indefinite integral of x314x2x^3 \sqrt{1 - 4x^2}.