Skip to Content

Calculus 1

6x9x2 dx\int \frac{6}{\sqrt{x-9x^2}}\ dx

What is the indefinite integral of y=100x2y = 100x^2

limx3(2x+5)\lim_{x \to 3} (2x + 5)

limx4x216x4\lim_{x \rightarrow 4} \frac{x^2 - 16}{x - 4}

limx9x3x9\lim_{x\rightarrow 9} \frac{\sqrt{x} - 3}{x - 9}

limx3x2x+12x+3\lim_{x\rightarrow -3} \frac{x^2 - x + 12}{x + 3}

limt1t3tt21\lim_{t \rightarrow 1} \frac{t^3 - t}{t^2 - 1}

limh0(h5)225h\lim_{h\rightarrow 0} \frac{(h-5)^2 - 25}{h}

limx02x2x\lim_{x\rightarrow 0} \frac{\sqrt{2 - x} - \sqrt{2}}{x}

Use the squeeze theorem to prove the following important trigonometric limit

limθ0sin(θ)θ=1\lim_{\theta\rightarrow 0} \frac{\sin(\theta)}{\theta} = 1

limθ0cos(θ)1θ\lim_{ \theta\rightarrow 0} \frac{\cos(\theta) - 1}{\theta}

Let g(x)=x2+x6x2g(x) = \frac{|x^2 + x - 6|}{x - 2}

Find the limit as x2+x2x2x\rightarrow 2^{+} x\rightarrow 2^{-} x\rightarrow 2

Let f(x)=3x5 f(x) = \frac{3}{x - 5},

Evaluate the limit as x5x\rightarrow 5^{-} and x5+ x\rightarrow 5^{+}

limx2x1x+1\lim_{x\rightarrow \infty}\frac{2x - 1}{x + 1}

limx3x25x+1x31\lim_{x\rightarrow \infty}\frac{3x^2 - 5x + 1}{x^3 - 1}

limx2x+1x2x\lim_{x\rightarrow \infty} \frac{2x + 1}{\sqrt{x^2 - x}}

limsin1x\lim_{\rightarrow \infty}\sin\frac{1}{x}

limx(5xarctanx)\lim_{x\rightarrow \infty}(\frac{5}{x} - \arctan{x})

limxxx2+1\lim_{x\rightarrow -\infty} \frac{x}{\sqrt{x^2 + 1}}

limθ0sec(2θ)tan(3θ)5θ\lim_{\theta\rightarrow 0} \frac{\sec{(2\theta)} \tan{(3 \theta)}}{5 \theta}