Skip to Content

Calculus 1

What is the indefinite integral of y=100x2y = 100x^2

limx3(2x+5)\lim_{x \to 3} (2x + 5)

limt1t3tt21\lim_{t \rightarrow 1} \frac{t^3 - t}{t^2 - 1}

limh0(h5)225h\lim_{h\rightarrow 0} \frac{(h-5)^2 - 25}{h}

Use the squeeze theorem to prove the following important trigonometric limit

limθ0sin(θ)θ=1\lim_{\theta\rightarrow 0} \frac{\sin(\theta)}{\theta} = 1

limx2x1x+1\lim_{x\rightarrow \infty}\frac{2x - 1}{x + 1}

limsin1x\lim_{\rightarrow \infty}\sin\frac{1}{x}

limθ0sec(2θ)tan(3θ)5θ\lim_{\theta\rightarrow 0} \frac{\sec{(2\theta)} \tan{(3 \theta)}}{5 \theta}

limx0tanxx\lim_{x\rightarrow 0} \frac{\tan{x}}{x}

Compute f(x)f'(x) using the limit definition of the derivative f(a)=limh0f(a+h)f(a)hf'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} for the following 1. f(x) = 3 2. f(x) = 3x-1 3. f(x) = x2+xx^2 + x 4. f(x) = (x)\sqrt(x) 5. f(x) = 1/x

Use the definition of derivatives to find the derivative of the following function,

f(x)=x1f(x) = \sqrt{x - 1}

Use the definition of the derivative to find f(x)f\prime(x) if

f(x)=235xf(x) = \frac{2}{3 - 5x}

Find the derivative of f(x)=sinx(x2+5)f(x) = \sin{x}(x^2 + 5)

Use the power rule to find the derivative of f(x)=2x5f(x) = 2x^5

Use the power rule to find the derivative of f(x)=2x32f(x) = 2x^{\frac{3}{2}}

Using the power rule for derivatives, find the first derivative of the function,

f(x)=4x3f(x) = \frac{4}{x^3}

Use the product rule to find the derivative of y=5x(x22)y = 5x(x^2 - 2)

Find the derivative of 23x54x22^{3x} \cdot 5^{4x^2}

Use the definition of the derivative to show that the derivative of sinx\sin{x} is equal to cosx\cos{x}

Show that the derivative of cosx\cos{x} is equal to sinx-\sin{x}