Skip to Content

Calculus 1: Graphing and Critical Points

Find the critical points of the function

f(x)=5(x24x)2f(x) = \frac{5}{{(x^2 - 4x)}^2}

For the following function draw a rough sketch of the graph for the 3 cases

f(x)=(xa)(xb)(xc)f(x) = \frac{(x - a)}{(x - b)(x - c)}

Case 1: a < b, c

Case 2: b < a < c

Case 3: b, c < a

Find and classify the critical points of the following function

f(x)=x33x29x+2f(x) = x^3 - 3x^2 - 9x + 2

y=x2/3(2x)y = x^{2/3}(2-x)

Find: A. The critical values of x? B. The x coordinate of the local maximum

Find the critical points of the following function

f(x)=6x5+33x430x3+100f(x) = 6x^5 + 33x^4 - 30x^3 + 100

Find the critical numbers for the following function

f(x)=ln(x2)+1.5xf(x) = \ln{(x^{2})} + 1.5x

Find the critical numbers of the function

f(x)=x24xf(x) = x^2 - 4x

Find the critical numbers for the following function f(x)=x23f(x) = x^{\frac{2}{3}}

Draw a rough graph of the following function using the critical numbers

f(x)=23x3+92x25x17f(x) = \frac{2}{3}x^3 + \frac{9}{2}x^2 - 5x - 17

Find the inflection points for the following function and determine intervals of concave up and concave down on the graph

f(x)=ln(1ln(x))f(x) = \ln{(1 - \ln{(x)})}

Find the inflection points and intervals of concavity for the following function

y=x2+1x2y = \frac{x^2 + 1}{x^2}

Use the 2nd Derivative Test to find the inflection points and intervals of concavity for the following function

f(x)=x3(x4)f(x) = x^{3}(x - 4)

Find all points of inflection and discuss the concavity over different intervals for the following function

f(x)=x36x2+12xf(x) = x^3 - 6x^2 + 12x

Use the second derivative test to find all relative extrema of the following function

f(x)=13x3+2x2+3xf(x) = \frac{1}{3}x^3 + 2x^2 + 3x

Find the relative extrema for the following function on the given interval

f(x)=2xx2+1f(x) = \frac{2x}{x^2 + 1} , [2,2][-2, 2]

Find the absolute extrema of the following function on the given interval

h(x)=xx2h(x) = \frac{x}{x - 2} , [3,5][3, 5]

Find all relative maximum and minimum values for the following function

f(x)=x432x2+256f(x) = x^4 - 32x^2 + 256