Skip to Content

Calculus 1

limx4x216x4\lim_{x \rightarrow 4} \frac{x^2 - 16}{x - 4}

limx9x3x9\lim_{x\rightarrow 9} \frac{\sqrt{x} - 3}{x - 9}

limx3x2x+12x+3\lim_{x\rightarrow -3} \frac{x^2 - x + 12}{x + 3}

limx02x2x\lim_{x\rightarrow 0} \frac{\sqrt{2 - x} - \sqrt{2}}{x}

limθ0cos(θ)1θ\lim_{ \theta\rightarrow 0} \frac{\cos(\theta) - 1}{\theta}

Let f(x)=3x5 f(x) = \frac{3}{x - 5},

Evaluate the limit as x5x\rightarrow 5^{-} and x5+ x\rightarrow 5^{+}

limx3x25x+1x31\lim_{x\rightarrow \infty}\frac{3x^2 - 5x + 1}{x^3 - 1}

limx2x+1x2x\lim_{x\rightarrow \infty} \frac{2x + 1}{\sqrt{x^2 - x}}

Find the slope of the tangent line to

f(x)=1xf(x) = \frac{1}{x}

when x = 4

Use the limit definition of the derivative to find the equation of the tangent line for the graph of

y=x23x+2y = x^2 - 3x + 2 at (2, 0)

Use the limit definition of the derivative to find the equation of the normal line to the graph of

f(x)=14xf(x) = \frac{1}{\sqrt{4 - x}} at x=3x = 3

Use the limit definition of the derivative to find all points on the graph of

f(x)=4x312x2+9xf(x) = 4x^3 - 12x^2 + 9x

where the tangent lines to the graph have slope zero.

Find the Derivative of f(x)=x5f(x) = \sqrt[5]{x}

Find the derivative of the function,

y=5x34x1+5x4y = 5x^3 - 4x - 1 + \frac{5}{x^4}

What is the derivative of the following function

f(x)=15x25f(x) = 15\sqrt[5]{x^2}

Use the quotient rule to find the derivative of the following funciton,

f(x)=x1x2+2x+1f(x) = \frac{x - 1}{x^2 + 2x + 1}

Given f(x)f(x), find the equation of the tangent line at the point (1,2)(-1, -2)

f(x)=4x(1+x2)f(x) = \frac{4x}{(1 + x^2)}

g(x)=(x+2x)exg(x) = (x + 2 \sqrt x)e^x

Show that the derivative of tanx\tan{x} is equal to sec2x\sec^2{x}

Use the quotient rule to find the derivative of cscx\csc{x}