Skip to Content

Limits of Functions

Home | Calculus 1 | Limits | Limits of Functions

limx02x2x\lim_{x\rightarrow 0} \frac{\sqrt{2 - x} - \sqrt{2}}{x}

Posted by Will Lynch a year ago

Related Problems

limx9x3x9\lim_{x\rightarrow 9} \frac{\sqrt{x} - 3}{x - 9}

limx3x2x+12x+3\lim_{x\rightarrow -3} \frac{x^2 - x + 12}{x + 3}

Use the squeeze theorem to prove the following important trigonometric limit

limθ0sin(θ)θ=1\lim_{\theta\rightarrow 0} \frac{\sin(\theta)}{\theta} = 1

limθ0cos(θ)1θ\lim_{ \theta\rightarrow 0} \frac{\cos(\theta) - 1}{\theta}