Let f(x)=3x−5 f(x) = \frac{3}{x - 5}f(x)=x−53,
Evaluate the limit as x→5−x\rightarrow 5^{-}x→5− and x→5+ x\rightarrow 5^{+}x→5+
limx→9x−3x−9\lim_{x\rightarrow 9} \frac{\sqrt{x} - 3}{x - 9} limx→9x−9x−3
limx→−3x2−x+12x+3\lim_{x\rightarrow -3} \frac{x^2 - x + 12}{x + 3}limx→−3x+3x2−x+12
limx→∞2x−1x+1\lim_{x\rightarrow \infty}\frac{2x - 1}{x + 1} limx→∞x+12x−1
limx→∞3x2−5x+1x3−1\lim_{x\rightarrow \infty}\frac{3x^2 - 5x + 1}{x^3 - 1} limx→∞x3−13x2−5x+1