limx→3(2x+5)
limx→4x−4x2−16
limx→9x−9x−3
limx→−3x+3x2−x+12
limt→1t2−1t3−t
limh→0h(h−5)2−25
limx→0x2−x−2
Use the squeeze theorem to prove the following important trigonometric limit
limθ→0θsin(θ)=1
limθ→0θcos(θ)−1
Let g(x)=x−2∣x2+x−6∣
Find the limit as x→2+x→2−x→2
Let f(x)=x−53,
Evaluate the limit as x→5− and x→5+
limx→∞x+12x−1
limx→∞x3−13x2−5x+1
limx→∞x2−x2x+1
lim→∞sinx1
limx→∞(x5−arctanx)
limx→−∞x2+1x
limθ→05θsec(2θ)tan(3θ)
limx→0xtanx
limx→0xsin(3x)