Find the anti-derivative of cos 3 ( x ) \cos^3(x) cos 3 ( x ) .
Find the anti-derivative of cos 5 ( x ) \cos^5(x) cos 5 ( x ) .
Find the indefinite integral of ∫ cos 5 ( x ) ⋅ sin ( x ) d x \displaystyle \int \cos^5(x) \cdot \sin(x) \, dx ∫ cos 5 ( x ) ⋅ sin ( x ) d x .
Find the indefinite integral of sin 5 ( x ) ⋅ cos 2 ( x ) d x \sin^5(x) \cdot \cos^2(x) \, dx sin 5 ( x ) ⋅ cos 2 ( x ) d x .
Find the indefinite integral of sin 5 ( x ) ⋅ cos 3 ( x ) \sin^5(x) \cdot \cos^3(x) sin 5 ( x ) ⋅ cos 3 ( x ) .
Find the indefinite integral of e x t s t y l e s i n 2 ( x ) extstyle \\sin^2(x) e x t s t y l e s i n 2 ( x ) .
Find the anti-derivative of cos 2 ( 3 x ) \cos^2(3x) cos 2 ( 3 x ) .
Find the indefinite integral of d i s p l a y s t y l e i n t s i n 4 ( x ) d x \\displaystyle \\int \\sin^4(x) \, dx d i s pl a ys t y l e in t s i n 4 ( x ) d x .
What is the anti-derivative of sin 2 ( x ) cos 2 ( x ) d x \sin^2(x)\cos^2(x)\, dx sin 2 ( x ) cos 2 ( x ) d x ?
Find the indefinite integral of cos 2 ( x ) ⋅ tan 3 ( x ) d x \cos^2(x) \cdot \tan^3(x)\, dx cos 2 ( x ) ⋅ tan 3 ( x ) d x .
Using trigonometric substitution, solve the integral ∫ 1 36 − x 2 d x
\displaystyle\int \frac{1}{\sqrt{36-x^2}} \, dx ∫ 36 − x 2 1 d x .
Evaluate the integral of 1 x 2 + 6 x \frac{1}{\sqrt{x^2 + 6x}} x 2 + 6 x 1 from 1 to 2.
Evaluate the definite integral ∫ 0 3 2 1 9 − x 2 d x \displaystyle \int_0^{\frac{3}{2}} \frac{1}{\sqrt{9-x^2}} \, dx ∫ 0 2 3 9 − x 2 1 d x using trigonometric substitution.
Evaluate the integral ∫ d x x 2 + 2 x + 145 \displaystyle \int \frac{dx}{\sqrt{x^2 + 2x + 145}} ∫ x 2 + 2 x + 145 d x .
Using trigonometric substitution, find the integral of 1 x 2 + 4 \frac{1}{\sqrt{x^2 + 4}} x 2 + 4 1 with respect to x x x .
Evaluate the indefinite integral of x 3 1 − 4 x 2 x^3 \sqrt{1 - 4x^2} x 3 1 − 4 x 2 .
Identify the type of trigonometric substitution needed (sine, tangent, secant) to integrate a function involving expressions such as a 2 − x 2 a^2 - x^2 a 2 − x 2 , a 2 + x 2 a^2 + x^2 a 2 + x 2 , or x 2 − a 2 x^2 - a^2 x 2 − a 2 , complete the necessary substitutions, and integrate the resulting expression.
Evaluate the definite integral ∫ 4 6 x 2 x 2 − 9 d x \displaystyle \int_{4}^{6} \frac{x^2}{\sqrt{x^2 - 9}} \, dx ∫ 4 6 x 2 − 9 x 2 d x by using trigonometric substitution in two different ways: first by computing the antiderivative and then using the Fundamental Theorem of Calculus with the original limits of integration; second by changing the limits of integration after substituting x = 3 sec ( θ ) x = 3 \sec(\theta) x = 3 sec ( θ ) and evaluating the integral in terms of θ \theta θ .
Solve ∫ sec θ ⋅ 4 tan 2 θ cos 2 θ d θ \displaystyle \int \frac{\sec \theta \cdot 4 \tan^2 \theta}{\cos^2 \theta} \, d\theta ∫ cos 2 θ sec θ ⋅ 4 tan 2 θ d θ using a substitution method.
Find the length of the curve y = 1 6 x 3 + 1 2 x y=\frac{1}{6}x^3+\frac{1}{2x} y = 6 1 x 3 + 2 x 1 from x = 1 x=1 x = 1 to x = 5 x=5 x = 5 .