Skip to Content

Calculus 2

Find the anti-derivative of cos3(x)\cos^3(x).

Find the anti-derivative of cos5(x)\cos^5(x).

Find the indefinite integral of cos5(x)sin(x)dx\displaystyle \int \cos^5(x) \cdot \sin(x) \, dx.

Find the indefinite integral of sin5(x)cos2(x)dx\sin^5(x) \cdot \cos^2(x) \, dx.

Find the indefinite integral of sin5(x)cos3(x)\sin^5(x) \cdot \cos^3(x).

Find the indefinite integral of extstylesin2(x) extstyle \\sin^2(x).

Find the anti-derivative of cos2(3x)\cos^2(3x).

Find the indefinite integral of displaystyleintsin4(x)dx\\displaystyle \\int \\sin^4(x) \, dx.

What is the anti-derivative of sin2(x)cos2(x)dx\sin^2(x)\cos^2(x)\, dx?

Find the indefinite integral of cos2(x)tan3(x)dx\cos^2(x) \cdot \tan^3(x)\, dx.

Using trigonometric substitution, solve the integral 136x2dx \displaystyle\int \frac{1}{\sqrt{36-x^2}} \, dx.

Evaluate the integral of 1x2+6x\frac{1}{\sqrt{x^2 + 6x}} from 1 to 2.

Evaluate the definite integral 03219x2dx\displaystyle \int_0^{\frac{3}{2}} \frac{1}{\sqrt{9-x^2}} \, dx using trigonometric substitution.

Evaluate the integral dxx2+2x+145\displaystyle \int \frac{dx}{\sqrt{x^2 + 2x + 145}}.

Using trigonometric substitution, find the integral of 1x2+4\frac{1}{\sqrt{x^2 + 4}} with respect to xx.

Evaluate the indefinite integral of x314x2x^3 \sqrt{1 - 4x^2}.

Identify the type of trigonometric substitution needed (sine, tangent, secant) to integrate a function involving expressions such as a2x2a^2 - x^2, a2+x2a^2 + x^2, or x2a2x^2 - a^2, complete the necessary substitutions, and integrate the resulting expression.

Evaluate the definite integral 46x2x29dx\displaystyle \int_{4}^{6} \frac{x^2}{\sqrt{x^2 - 9}} \, dx by using trigonometric substitution in two different ways: first by computing the antiderivative and then using the Fundamental Theorem of Calculus with the original limits of integration; second by changing the limits of integration after substituting x=3sec(θ)x = 3 \sec(\theta) and evaluating the integral in terms of θ\theta.

Solve secθ4tan2θcos2θdθ\displaystyle \int \frac{\sec \theta \cdot 4 \tan^2 \theta}{\cos^2 \theta} \, d\theta using a substitution method.

Find the length of the curve y=16x3+12xy=\frac{1}{6}x^3+\frac{1}{2x} from x=1x=1 to x=5x=5.