Complete the square for the expression x2+2x and then perform a trigonometric substitution.
Find the indefinite integral of xarccos(x)dx using trigonometric substitution.
Integrate ∫01x2+11dx using trigonometric substitution.
Evaluate ∫x2+41dx using trigonometric substitution.
Evaluate ∫9−x21dx using appropriate trigonometric substitution.
Show that the area of a circle is π×r2 using trigonometric substitution.
Evaluate the integral ∫(ex⋅e2x−4)dx using substitution.
Evaluate ∫(x+5)2+4xdx using trigonometric substitution after completing the square.
Evaluate ∫16−(x−4)21dx using trigonometric substitution after completing the square.
Evaluate the integral ∫x29−x2dx using trig substitution, where you substitute x=3sinθ.
Find the square root of one minus x2.
Find the integral of x41−x2dx by making the substitution x=cos(θ).
Determine the location of the center of mass of a rod with density (x2+9)3/21 where x goes from 0 to 4.
Find the integral ∫y3y2−11dy.
Find the integral ∫t+1t2+2tdt.
Find the integral of cosine of z over the square root of 3+cos2(z)dz.
Integrate (x2+22)3/2dx using the tangent substitution where x=2tan(θ).
Compute the integral of ∫9−x2dx using the sine substitution where x=3sin(θ).
Integrate 4x2−1dx using the secant substitution where x=21sec(θ).
Integrate x2−2x−84 using partial fractions.