Skip to Content

Calculus 2

Complete the square for the expression x2+2xx^2 + 2x and then perform a trigonometric substitution.

Find the indefinite integral of xarccos(x)dx\displaystyle x \arccos(x) \, dx using trigonometric substitution.

Integrate 011x2+1dx\displaystyle \int_{0}^{1} \frac{1}{x^2 + 1} \, dx using trigonometric substitution.

Evaluate 1x2+4dx\displaystyle \int \frac{1}{x^2 + 4} \, dx using trigonometric substitution.

Evaluate 19x2dx\displaystyle \int \frac{1}{9 - x^2} \, dx using appropriate trigonometric substitution.

Show that the area of a circle is π×r2\pi \times r^2 using trigonometric substitution.

Evaluate the integral (exe2x4)dx\displaystyle \int \left( e^x \, \cdot \, \sqrt{e^{2x} - 4}\right) \, dx using substitution.

Evaluate x(x+5)2+4dx\displaystyle \int \frac{x}{\sqrt{(x+5)^2 + 4}} \, dx using trigonometric substitution after completing the square.

Evaluate 116(x4)2dx\displaystyle \int \frac{1}{16 - (x-4)^2} \, dx using trigonometric substitution after completing the square.

Evaluate the integral 9x2x2dx\displaystyle \int \frac{\sqrt{9 - x^2}}{x^2} \, dx using trig substitution, where you substitute x=3sinθx = 3\sin\theta.

Find the integral of 1x2x4dx\frac{\sqrt{1-x^2}}{x^4} \, dx by making the substitution x=cos(θ)x = \cos(\theta).

Determine the location of the center of mass of a rod with density 1(x2+9)3/2\frac{1}{(x^2 + 9)^{3/2}} where xx goes from 0 to 4.

Find the integral 1y3y21dy\displaystyle \int \frac{1}{y^3 \sqrt{y^2 - 1}} \, dy.

Find the integral t2+2tt+1dt\displaystyle \int \frac{\sqrt{t^2 + 2t}}{t + 1} \, dt.

Find the integral of cosine of zz over the square root of 3+cos2(z)dz3 + \cos^2(z) \, dz.

Integrate dx(x2+22)3/2\displaystyle \frac{dx}{(x^2 + 2^2)^{3/2}} using the tangent substitution where x=2tan(θ)x = 2 \tan(\theta).

Compute the integral of 9x2dx\displaystyle \int \sqrt{9 - x^2} \, dx using the sine substitution where x=3sin(θ)x = 3\sin(\theta).

Integrate dx4x21\frac{dx}{\sqrt{4x^2 - 1}} using the secant substitution where x=12sec(θ)x = \frac{1}{2}\sec(\theta).

Integrate 4x22x8\frac{4}{x^2 - 2x - 8} using partial fractions.