∫sec2xtan3xdx
∫cos4(5x)dx
∫tan3xsec3xdx
Evaluate the integral ∫0π/21+sin2tcostdt.
Evaluate ∫cos2(θ)dθ using the double angle identity.
Evaluate the integral of 1−x21 which is equivalent to the inverse sine of x.
Solve ∫sin3xcos4xdx using the substitution method where the power of sine is odd.
Solve ∫sin4xdx using trigonometric identities for even powers.
Solve ∫sin2xcos2xdx using double angle or half angle formulas for the even powers.
Find the integral of cosine of z over the square root of 3+cos2(z)dz.
Using trigonometric identities, such as cos2(θ)+sin2(θ)=1, find related identities to simplify expressions in integral problems.
Integrate cos3θ with respect to θ.
Find the anti-derivative of cos3(x).
Find the anti-derivative of cos5(x).
Find the indefinite integral of ∫cos5(x)⋅sin(x)dx.
Find the indefinite integral of sin5(x)⋅cos2(x)dx.
Find the indefinite integral of sin5(x)⋅cos3(x).
Find the indefinite integral of extstylesin2(x).
Find the anti-derivative of cos2(3x).
Find the indefinite integral of displaystyleintsin4(x)dx.