Skip to Content

Calculus 2

Evaluate the integral 141(4x)2/3dx\displaystyle \int_{1}^{4} \frac{1}{(4-x)^{2/3}} \, dx.

Evaluate the integral 01lnxdx\displaystyle \int_{0}^{1} \ln x \, dx using integration by parts and limits as the variable approaches zero from the right.

Evaluate the integral 0f(x)dx \int_{0}^{\infty} f(x) \, dx by breaking it into 01f(x)dx \int_{0}^{1} f(x) \, dx and 1f(x)dx \int_{1}^{\infty} f(x) \, dx, addressing the infinite interval and discontinuity at zero.

Evaluate the integral from 11 to \infty of 1x+sin2xdx\frac{1}{x} + \sin^2 x \, dx.

Determine if the integral 111+xdx\displaystyle \int_{1}^{\infty} \frac{1}{1+x} \, dx is convergent or divergent using the comparison test.

Determine whether the integral from negative infinity to 1 of 12x5dx\frac{1}{2x-5} \, dx is convergent or divergent and evaluate it if it is convergent.

Determine whether the integral from 0 to infinity of 0x(x2+2)2dx\displaystyle \int_{0}^{\infty} \frac{x}{(x^2+2)^2} \, dx is convergent or divergent and evaluate it if it is convergent.

Determine whether the integral from negative infinity to infinity of (2v4)dv \displaystyle \int_{-\infty}^{\infty} (2 - v^4) \, dv is convergent or divergent and evaluate if possible.

Determine whether the integral from 2 to 3 of 2313xdx\displaystyle \int_{2}^{3} \frac{1}{\sqrt{3 - x}} \, dx is convergent or divergent and evaluate it if it is convergent.

Given the improper integral from 1 to infinity of 11xpdx\displaystyle \int_{1}^{\infty} \frac{1}{x^p} \, dx, determine if it is convergent or divergent for different values of pp.

Use the comparison theorem to determine whether the integral from 0 to π\pi of sin2xxdx\frac{\sin^2 x}{\sqrt{x}} \, dx is convergent or divergent.

Determine the convergence or divergence of the integral from 1 to infinity of 12+exxdx\displaystyle \int_{1}^{\infty} \frac{2 + e^{-x}}{x} \, dx using the comparison theorem.

Find the indefinite integral of 1x24\frac{1}{x^2 - 4} using integration by partial fractions.

Evaluate the integral x4x2+2x15dx\displaystyle \int \frac{x - 4}{x^2 + 2x - 15} \, dx by performing partial fraction decomposition.

Integrate 1x1+1x2+1(x2)2\frac{1}{x - 1} + \frac{1}{x - 2} + \frac{1}{(x - 2)^2} using partial fraction decomposition, acknowledging repeated linear factors.

Find the antiderivative of x2+9(x21)(x2+4)\frac{x^2 + 9}{(x^2 - 1)(x^2 + 4)} using partial fraction decomposition.

Find the surface area of the solid formed by revolving the curve y=4xx2y=\sqrt{4x-x^2} about the x-axis, where x ranges from 0.50.5 to 1.51.5.

Find the surface area of the solid formed by revolving the curve x=34yx = 3\sqrt{4 - y} about the y-axis, where yy ranges from 0 to 154\frac{15}{4}.

Calculate the surface area of a solid of revolution when rotating a given curve segment about the x-axis using the formula S=ab2πy1+(dydx)2dxS = \int_{a}^{b} 2\pi y \, \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx or S=cd2πy1+(dxdy)2dyS = \int_{c}^{d} 2\pi y \, \sqrt{1 + \left( \frac{dx}{dy} \right)^2} \, dy, depending on whether the curve is described as y(x)y(x) or x(y)x(y).

Given a function that forms a squiggly line, rotate it around the x-axis to form a three-dimensional shape. Find the surface area of this shape.