Skip to Content

Calculus 2

Evaluate 2x21xdx\displaystyle \int \frac{\sqrt{2x^2 - 1}}{x} \, dx using trigonometric substitution.

Evaluate 1(x2+1)2dx \displaystyle \int \frac{1}{(x^2 + 1)^2} \, dx using an appropriate substitution method.

Evaluate 4x2x2dx\displaystyle \int \frac{\sqrt{4 - x^2}}{x^2} \, dx from 2\sqrt{2} to 2 using trigonometric substitution.

Using trigonometric substitution, integrate the following expressions: a2x2\sqrt{a^2 - x^2}, a2+x2\sqrt{a^2 + x^2}, and x2a2\sqrt{x^2 - a^2}.

Integrate y2(16y2)3/2\frac{y^2}{(16-y^2)^{3/2}} with respect to yy.

Integrate x2+369x2\frac{\sqrt{x^2 + 36}}{9x^2} with respect to xx.

Evaluate the definite integral 918/3dttt281\displaystyle \int_{9}^{18/\sqrt{3}} \frac{dt}{t\sqrt{t^2 - 81}} using trigonometric substitution.

Solve sin3xcos4xdx\displaystyle \int \sin^3 x \cos^4 x \, dx using the substitution method where the power of sine is odd.

Solve sin4xdx\displaystyle \int \sin^4 x \, dx using trigonometric identities for even powers.

Solve sin2xcos2xdx\displaystyle \int \sin^2 x \cos^2 x \, dx using double angle or half angle formulas for the even powers.

Find the area under the curve y=1x2y = \sqrt{1 - x^2} from x=0x = 0 to x=1x = 1 using trigonometric substitution.

Evaluate 0121x2dx\displaystyle \int_{0}^{\frac{1}{2}} \sqrt{1-x^2} \, dx using trigonometric substitution, where x=sinθx=\sin\theta.

Perform a trigonometric substitution for evaluating the integral involving inverse substitution where x=12ux=\frac{1}{2}u.

Evaluate the integral using trigonometric substitution where x=3sinθx = 3 \sin \theta for the expression involving 9x2\sqrt{9 - x^2}.

Use trigonometric substitution to solve the integral involving a square root: integrate from 3-3 to 33 the square root of 9x29 - x^2 dxdx.

Using trigonometric substitution, solve integrals that have integrals involving a2u2a^2 - u^2, a2+u2a^2 + u^2, and u2a2u^2 - a^2 inside the radical.

Using trigonometric substitution, solve integrals involving a2+u2a^2 + u^2 under the radical.

Integrate x316x2\frac{x^3}{\sqrt{16-x^2}} using trigonometric substitution.

Evaluate the integral x216x2dx\displaystyle \int \frac{\sqrt{x^2 - 16}}{x^2} \, dx using trigonometric substitution.

Using trigonometric substitution, simplify the expression a2u2\sqrt{a^2 - u^2}, where u=asinθu = a \sin\theta.