Skip to Content

Calculus 2

Using a triangle, identify the trigonometric substitution for evaluating the integral involving 9x2\sqrt{9 - x^2} and carry out the integration.

Find the integral of the function from 11 to 33 for 1(1+x2)3\frac{1}{(\sqrt{1 + x^2})^3} using trigonometric substitution and outline the process.

Perform the trigonometric substitution for the integral involving x24\sqrt{x^2 - 4}.

Using a triangle, identify the trigonometric substitution for the problem involving x=2θx = 2 \theta and integrate.

Set up a right triangle based on the expression 4x24-x^2 to use trigonometric substitution for integration, identifying which side represents the hypotenuse.

Simplify the integral using trigonometric substitution and express the result back in terms of xx.

Evaluate the integral x39x2dx\displaystyle \int x^3 \sqrt{9 - x^2} \, dx using trigonometric substitution.

Evaluate the integral 12x21xdx \displaystyle \int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x} \, dx.

Evaluate the integral 0π/2cost1+sin2tdt\displaystyle \int_{0}^{\pi/2} \frac{\cos t}{\sqrt{1 + \sin^2 t}} \, dt.

x225xdx \displaystyle \int \frac{\sqrt{x^2-25}}{x} \, dx with x=5secθx = 5 \sec \theta

3x2dx\displaystyle \int \sqrt{3 - x^2} \, dx

Evaluate the definite integral from 44 to 434\sqrt{3} of 1x2x2+16dx\frac{1}{x^2 \sqrt{x^2 + 16}} \, dx.

Integrate 1tan2θsecθsec2θdθ\frac{1}{\tan^2 \theta} \cdot \sec \theta \cdot \sec^2 \theta \, d\theta by rewriting the expression in terms of sines and cosines and using a trigonometric substitution.

Find the anti-derivative of x9x2+3x10\frac{x - 9}{x^2 + 3x - 10} using partial fractions.

Find the limit as x0x \to 0 of sinxxx2\displaystyle \frac{\sin x - x}{x^2} using L'Hôpital's Rule.

Evaluate the integral of 1x2+1\displaystyle \frac{1}{x^2 + 1} using partial fractions.

Solve the integral of dxx29\frac{dx}{\sqrt{x^2 - 9}}.

Evaluate sec3θdθ \displaystyle \int \sec^3 \theta \, d\theta using trig substitution where x=tan(θ)x = \tan(\theta).

Evaluate cos2(θ)dθ\displaystyle \int \cos^2(\theta) \, d\theta using the double angle identity.

Evaluate the integral of the square root of 1x21-x^2 using trigonometric substitution.