Skip to Content

Calculus 2

Evaluate xsin(x)dx\int x \, sin(x) \, dx

Evaluate x2cos(x)dx\int x^2 \, cos(x) \, dx

Find the area enclosed by x2+y2=r2x^2 + y^2 = r^2.

Integrate 9x2x2dx\frac{\sqrt{9-x^2}}{x^2} \, dx using trigonometric substitution.

Integrate 1x2x2+4dx\frac{1}{x^2 \sqrt{x^2 + 4}} \, dx using trigonometric substitution.

Simplify and integrate the expression (x2+9)3/2(x^2 + 9)^{3/2} using trigonometric substitution where x=3tan(θ)x = 3\tan(\theta).

Evaluate the integral dtt2+9\displaystyle \int \frac{dt}{t^2 + 9} using trigonometric substitution.

Integrate the square root of 2x22-x^2 over x2x^2.

Integrate 1x9x2\displaystyle \frac{1}{x \sqrt{9-x^2}}.

Integrate 4x2x2\frac{\sqrt{4-x^2}}{x^2} using trigonometric substitution.

Find the indefinite integral of x3x2+9dx\displaystyle \int \frac{x^3}{\sqrt{x^2 + 9}} \, dx using trigonometric substitution.

Perform the substitution u=x+1u = x + 1 and express the integral 1(x+1)25dx\displaystyle \int \sqrt{1 - (x + 1)^2}^5 \, dx in terms of uu.

Perform the trigonometric substitution for the integral involving 1+x2\sqrt{1 + x^2}.

Using a triangle, identify the trigonometric substitution for evaluating the integral involving 9x2\sqrt{9 - x^2} and carry out the integration.

Find the integral of the function from 11 to 33 for 1(1+x2)3\frac{1}{(\sqrt{1 + x^2})^3} using trigonometric substitution and outline the process.

Perform the trigonometric substitution for the integral involving x24\sqrt{x^2 - 4}.

Using a triangle, identify the trigonometric substitution for the problem involving x=2θx = 2 \theta and integrate.

Complete the square for the expression x22x+3x^2 - 2x + 3 and rewrite it in the form ab2a - b^2.