Skip to Content

Calculus 2: Strategy for integration

Evaluate the integral 8152u2du8 \displaystyle \int_{1}^{\frac{\sqrt{5}}{2}} u^2 \, du.

Evaluate the integral from 0 to 2 of 02(5x42x)dx \displaystyle \int_{0}^{2} (5x^4 - 2x) \, dx using the fundamental theorem of calculus Part 2.

Evaluate 1(x2+1)2dx \displaystyle \int \frac{1}{(x^2 + 1)^2} \, dx using an appropriate substitution method.

Evaluate 03e2xdx \displaystyle \int_{0}^{3} e^{2x} \, dx using the uu-substitution method, where u=2xu = 2x.

Evaluate the integral (exe2x4)dx\displaystyle \int \left( e^x \, \cdot \, \sqrt{e^{2x} - 4}\right) \, dx using substitution.

Find the integral t2+2tt+1dt\displaystyle \int \frac{\sqrt{t^2 + 2t}}{t + 1} \, dt.

Simplify and integrate 4x22x8dx\displaystyle \int \frac{4}{x^2 - 2x - 8} \, dx by completing the square.

Make the substitution u=exu = e^x to evaluate the integral duu29u2 \int \frac{du}{u^2 \sqrt{9 - u^2}}.

Evaluate the integral 141(4x)2/3dx\displaystyle \int_{1}^{4} \frac{1}{(4-x)^{2/3}} \, dx.