Skip to Content

Calculus 2: Trigonometric Integrals

cos3xdx\displaystyle \int cos^3x \, dx

sin2xdx\displaystyle \int sin^2x\, dx

tan3xsec2xdx\displaystyle \int \frac{tan^3x}{sec^2x} \, dx

sin3xcos4x, dx\displaystyle \int sin^3x \, cos^4x ,\ dx

Evaluate xsin1x1x2dx\displaystyle \int \frac{x \, sin^{-1}x}{\sqrt{1-x^2}} \, dx

Evaluateecos1xdx\displaystyle \int e^{cos^{-1}x}\, dx

cos4(5x)dx\displaystyle \int cos^4(5x)\, dx

tan3xsec3xdx\displaystyle \int tan^3x \, sec^3x \, dx

Evaluate the integral 0π/2cost1+sin2tdt\displaystyle \int_{0}^{\pi/2} \frac{\cos t}{\sqrt{1 + \sin^2 t}} \, dt.

Evaluate cos2(θ)dθ\displaystyle \int \cos^2(\theta) \, d\theta using the double angle identity.

Evaluate the integral of 11x2\frac{1}{\sqrt{1-x^2}} which is equivalent to the inverse sine of x.

Solve sin3xcos4xdx\displaystyle \int \sin^3 x \cos^4 x \, dx using the substitution method where the power of sine is odd.

Solve sin4xdx\displaystyle \int \sin^4 x \, dx using trigonometric identities for even powers.

Solve sin2xcos2xdx\displaystyle \int \sin^2 x \cos^2 x \, dx using double angle or half angle formulas for the even powers.

Find the integral of cosine of zz over the square root of 3+cos2(z)dz3 + \cos^2(z) \, dz.

Using trigonometric identities, such as cos2(θ)+sin2(θ)=1\cos^2(\theta) + \sin^2(\theta) = 1, find related identities to simplify expressions in integral problems.

Calculate the definite integral of sec2(θ)1\sec^2(\theta) - 1 from θ=0\theta = 0 to θ=π6\theta = \frac{\pi}{6}.

Integrate cos3θ\cos^3 \theta with respect to θ\theta.

Find the anti-derivative of cos3(x)\cos^3(x).

Find the anti-derivative of cos5(x)\cos^5(x).