Skip to Content

Calculus 1

Evaluate e p tan1(x)1+x2 dx\displaystyle\int\frac{e^{ \ p \ \tan^{-1}(x)}}{1 + x^2} \ dx

earcsin(x)1x2dx\int{\frac{e^{arcsin(x)}}{\sqrt{1-x^2}}}dx

Evaluate the definite integral below

22 x2cos(x38) dx\displaystyle\int_{-2}^2 \ {x^2 \cos{(\frac{x^3}{8})}} \ dx

Evaluate the following definite integral

04 xx2+9 dx\displaystyle\int_0^4 \ x \sqrt{x^2 + 9} \ dx

Find the area under the curve over the interval [0,4][0,4]

f(x)=x2+1f(x) = x^2 + 1

Find the area under the curve over the interval [1,4][1,4]

f(x)=2xf(x) = \frac{2}{x}

Evaluate the integral

02(2x2x2) dx\displaystyle\int_0^2 (2x - 2x^2) \ dx

Evaluate the integral π4π2(2csc2x) dx\displaystyle\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2 - \csc^2{x}) \ dx

Find the area the region bounded by:

y=1+x3y = 1 + \sqrt[3]{x}

x=0x = 0

x=8x = 8

y=0y = 0

Compute the definite integrals

π6π3tan(x) dx\displaystyle\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan (x) \ dx and π3π3tan(x) dx\displaystyle\int_{\frac{-\pi}{3}}^{\frac{\pi}{3}} \tan (x) \ dx

Find the area between the two curves y=x42x2y = x^4 - 2x^2 and y=2x2y = 2x^2

Find the area bounded by the following curves/lines

y=x+1y = x + 1

y=9x2y = 9 - x^2

x=1x = -1

x=2x = 2

Find the area between the curves y=xy = x and y=x2y = x^2

Compute the area between y=sinxy = \sin{x} and y=cosxy = \cos{x} and the interval [π4,5π4][\frac{\pi}{4}, \frac{5\pi}{4}]

Compute the area of the region bounded by the curves y=x3y = x^3 and y=3x2y = 3x - 2

Find the average value on [0,16][0, 16] of f(x)=xf(x) = \sqrt{x}

What is the average value of the function f(x)=3x22xf(x) = 3x^2 - 2x on [1,4][1, 4]

Find the average value of the function h(x)=cos4(x)sin(x)h(x) = \cos^4{(x)}\sin(x) on [0,π][0, \pi]

Determine the volume of the solid generated by rotating the function about the x-axis on [0,3][0,3]

y=9x2y = \sqrt{9 - x^2}