Skip to Content

Calculus 2: Trigonometric substitution

Convert x=secθx = \sec\theta back in terms of xx using a right triangle and basic SOHCAHTOA.

For a radical x21\sqrt{x^2 - 1}, use trigonometric substitution and translate sinθ\sin\theta back to xx in the problem solved.

Integrate using trig substitution when you have both a radical expression in the numerator and a coefficient on the x2x^2 term.

Solve the integral using trigonometric substitution where the square root involves 1sin2(x)1 - \sin^2(x).

Perform a trigonometric substitution for evaluating the integral involving inverse substitution where x=12ux=\frac{1}{2}u.

Evaluate the integral using trigonometric substitution where x=3sinθx = 3 \sin \theta for the expression involving 9x2\sqrt{9 - x^2}.

Using trigonometric substitution, solve integrals that have integrals involving a2u2a^2 - u^2, a2+u2a^2 + u^2, and u2a2u^2 - a^2 inside the radical.

Using trigonometric substitution, solve integrals involving a2+u2a^2 + u^2 under the radical.

Using trigonometric substitution, simplify the expression a2u2\sqrt{a^2 - u^2}, where u=asinθu = a \sin\theta.

Solve the indefinite integral 4x216x2dx\displaystyle \int 4x^2 \sqrt{16 - x^2} \, dx using appropriate substitution.

Identify the type of trigonometric substitution needed (sine, tangent, secant) to integrate a function involving expressions such as a2x2a^2 - x^2, a2+x2a^2 + x^2, or x2a2x^2 - a^2, complete the necessary substitutions, and integrate the resulting expression.