Skip to Content

Calculus 1

Find 2x1+2x2 dx\displaystyle\int\frac{2x}{1 + 2x^2} \ dx

Evaluate e p tan1(x)1+x2 dx\displaystyle\int\frac{e^{ \ p \ \tan^{-1}(x)}}{1 + x^2} \ dx

Evaluate the definite integral below

22 x2cos(x38) dx\displaystyle\int_{-2}^2 \ {x^2 \cos{(\frac{x^3}{8})}} \ dx

Evaluate the following definite integral

04 xx2+9 dx\displaystyle\int_0^4 \ x \sqrt{x^2 + 9} \ dx

Find the area under the curve over the interval [0,4][0,4]

f(x)=x2+1f(x) = x^2 + 1

Evaluate the integral π4π2(2csc2x) dx\displaystyle\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2 - \csc^2{x}) \ dx

Find the area the region bounded by:

y=1+x3y = 1 + \sqrt[3]{x}

x=0x = 0

x=8x = 8

y=0y = 0

Find the area between the two curves y=x42x2y = x^4 - 2x^2 and y=2x2y = 2x^2

Find the average value of the function h(x)=cos4(x)sin(x)h(x) = \cos^4{(x)}\sin(x) on [0,π][0, \pi]

Determine the volume of the solid generated by rotating the function about the x-axis on [0,3][0,3]

y=9x2y = \sqrt{9 - x^2}

Determine the volume of the solid generated by rotating the function about the y-axis on [0,4][0,4]

y=xy = \sqrt{x}

Use the shell method to determine the volume of the solid formed by rotating the region about the y axis.

y=x2+2y = x^2 + 2

y=0y = 0, x=0x = 0, x=2x = 2