Skip to Content

Calculus 1

Find the linearization of f(x)=(1+x)Pf(x) = {(1 + x)}^{P} at 00, and approximate f(0.99)f(\sqrt{0.99})

Approximate 754\sqrt[4]{75} using the Newton Raphson method

Approximate f(x)=x3f(x) = \sqrt[3]{x} at x=26x = 26

Let f(x)=xf(x) = \sqrt{x} at x=4x = 4 and Δx=0.02\Delta{x} = 0.02

Find dxdx, dydy, Δy\Delta{y}

Evaluate the following indefinite integral

3x6dx\displaystyle\int{3x^6} dx

Evaluate the following integral

(3x+5x2) dx\displaystyle\int (3x + 5x^2) \ dx

Let f(x)=2xf^\prime(x) = 2x what is the antiderivative, f(x)f(x) ?

Evaluate the indefinite integral below

(x3+2x1) dx\displaystyle\int (x^3 + 2x - 1) \ dx

Evaluate the following integral

(x+1)2x+x2 dx\displaystyle\int (x + 1) \sqrt{2x + x^2} \ dx

Evaluate x51+x2 dx\displaystyle\int x^5 \sqrt{1 + x^2} \ dx

Evaluate the integral

02(2x2x2) dx\displaystyle\int_0^2 (2x - 2x^2) \ dx

Compute the area between y=sinxy = \sin{x} and y=cosxy = \cos{x} and the interval [π4,5π4][\frac{\pi}{4}, \frac{5\pi}{4}]

Use the disk method to find the volume of the solid of rotation by rotating the bounded area around the y-axis

y=2x2y = 2x^2, y=0y = 0, x=2x = 2