Skip to Content

Calculus 3

Find the arc length of the vector-valued function R(t)=3titj\mathbf{R}(t) = 3t\mathbf{i} - t\mathbf{j} over the interval \([0, 3]\).

Given a function f(x,y)=x2yf(x, y) = x^2 \cdot y, where x(t)=2t+1x(t) = 2t + 1 and y(t)=t3y(t) = t^3, find dwdt\frac{dw}{dt} using the multi-variable chain rule.

What is the derivative of the function composition F(x(T),y(T))F(x(T), y(T)) given F(x,y)=x2yF(x, y) = x^2 y, x(T)=cos(T)x(T) = \,\cos(T), and y(T)=s(T)y(T) = s(T)?

Find the derivative of (x23x)5(x^2 - 3x)^5.

Find the derivative of (x37)12(x^3 - 7)^{12}.

Find the derivative of 1(x2+8)3\frac{1}{(x^2 + 8)^3}.

Using the chain rule, find dzdt\frac{dz}{dt} for a function z=f(x,y)z = f(x, y) where x=x(t)x = x(t) and y=y(t)y = y(t).

Find dWdT\frac{dW}{dT} for W=xsin(y)W = x \cdot \sin(y) where x=etx = e^t and y=πty = \pi - t, and evaluate dWdT\frac{dW}{dT} at t=0t = 0.

Given a function z=x3+y3z = x^3 + y^3 where x=2sin(t)x = 2\sin(t) and y=3cos(t)y = 3\cos(t), calculate dzdt\frac{dz}{dt}.

Calculate the dot product of vectors a=(2,3)\mathbf{a} = (2, 3) and b=(5,4)\mathbf{b} = (5, -4).

Calculate the dot product of vectors a=(3,4,7)\mathbf{a} = (3, -4, 7) and b=(5,2,3)\mathbf{b} = (5, 2, -3).

Calculate the square of the magnitude of vector a=(2,3)\mathbf{a} = (2, 3).

Calculate the dot product of aa and bb times vector aa, where a=(2,3)\mathbf{a} = (2, 3) and b=(5,4)\mathbf{b} = (5, -4).

Calculate the dot product between vector bb and 3a3a, where a=(2,3)\mathbf{a} = (2, 3) and b=(5,4)\mathbf{b} = (5, -4).