Skip to Content

Calculus 2: Parametrized curves

Using parameterization, find the coordinates of a point on the unit circle given an angle θ\theta.

Graph the parametric equations x=2tx=2t and y=t2y=t^2 by picking some tt values and finding the corresponding xx and yy values. Plot the points and connect them to see the resulting parabola.

Parametrize the unit circle in the XY-plane in XYZ space using trigonometry, with R(T)=(cos(T),sin(T),0)R(T) = (\cos(T), \sin(T), 0) for T in [0,2π][0, 2\pi].

Parametrize the straight line segment from point P to point Q using R(T)=(1T)OP+TOQR(T) = (1-T) \cdot OP + T \cdot OQ for T in [0,1][0,1].