Skip to Content

Calculus 2: Improper integrals

Given the improper integral from 1 to infinity of 11xpdx\displaystyle \int_{1}^{\infty} \frac{1}{x^p} \, dx, determine if it is convergent or divergent for different values of pp.

Use the comparison theorem to determine whether the integral from 0 to π\pi of sin2xxdx\frac{\sin^2 x}{\sqrt{x}} \, dx is convergent or divergent.

Determine the convergence or divergence of the integral from 1 to infinity of 12+exxdx\displaystyle \int_{1}^{\infty} \frac{2 + e^{-x}}{x} \, dx using the comparison theorem.

If you look at the improper interval and the improper integral converges or diverges, whatever it does, the same is true of the series.