Skip to Content

Calculus 3

Compute the line integral of the vector field F on a curve CC, using the parameterization r(t)\mathbf{r}(t) from t=at = a to t=bt = b. The line integral is given by abF(r(t))drdtdt\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} \, dt.

Evaluate the integral 0π3sin(x)cos(π3x)dx\int_{0}^{\frac{\pi}{3}} \sin(x) \cos\left(\frac{\pi}{3} - x\right) \, dx.

Calculate the volume of a truncated wedge with dimensions: 2 units high, 5 units at the end, 6 units long, and 4 units wide, using a triple integral in rectangular coordinates.

Evaluate the triple integral from 0 to π\pi and 0 to 2 and then 0 to 4Z2\sqrt{4 - Z^2} of ZsinYZ \sin Y with respect to dXdX dZdZ dydy.

Evaluate the triple integral: 241103(yxz)dzdydx\int_{2}^{4} \int_{-1}^{1} \int_{0}^{3} (y - xz) \, dz \, dy \, dx.