Skip to Content

Calculus 3: Parametric curves, conic sections

Sketch the curve whose vector equation is r(t)=cos(t)i+sin(t)j+tkr(t) = \cos(t) \mathbf{i} + \sin(t) \mathbf{j} + t \mathbf{k}.

Given the vector-valued function r(t)=0,3cos(t),5sin(t)r(t) = \langle 0, 3\cos(t), 5\sin(t) \rangle, describe the curve in 3D space.

Given the vector-valued function r(t)=6cos(t),0,6sin(t)r(t) = \langle 6\cos(t), 0, 6\sin(t) \rangle, describe the curve in 3D space and explain the effect of a negative yy-component like t-t.