Skip to Content

Calculus 3: Dot and cross product

Calculate the dot product between vector a=(4,5)\mathbf{a} = (4, 5) and the sum of vectors b=(3,6)\mathbf{b} = (3, -6) and c=(8,2)\mathbf{c} = (-8, 2).

Find the cross product of the vectors A=1,3,4\mathbf{A} = \langle 1, 3, 4 \rangle and B=2,7,5\mathbf{B} = \langle 2, 7, -5 \rangle.

Find the cross product of vectors a\mathbf{a} and b\mathbf{b}, where a=3i+5j7k\mathbf{a} = 3\mathbf{i} + 5\mathbf{j} - 7\mathbf{k} and b=2i6j+4k\mathbf{b} = 2\mathbf{i} - 6\mathbf{j} + 4\mathbf{k}.

Using the vector cross product, determine the vector perpendicular to two given initial vectors using the right-hand rule.

Calculate the dot product of u\mathbf{u} and 3v3\mathbf{v} by using a shortcut method for scalar multiplication.

Find w2w_2, the vector component of u\mathbf{u} orthogonal to v\mathbf{v}, where u=(3,5)\mathbf{u} = (3, 5) and v=(2,4)\mathbf{v} = (2, 4).

For vectors u=6i3j+9k\mathbf{u} = 6\mathbf{i} - 3\mathbf{j} + 9\mathbf{k} and v=4ij+8k\mathbf{v} = 4\mathbf{i} - \mathbf{j} + 8\mathbf{k}, find the two components w1w_1 and w2w_2 of vector u\mathbf{u}, where w1w_1 is the projection of u\mathbf{u} onto v\mathbf{v} and w2w_2 is the component orthogonal to v\mathbf{v}.