Skip to Content

Inverse Hyperbolic Sin Derivative

Home | Calculus 1 | Inverse and Hyperbolic Trig Derivatives | Inverse Hyperbolic Sin Derivative

Find the derivative of f(x)=(sinh1(x))32f(x) = {(\sinh^{-1}(x))}^{\frac{3}{2}}

Posted by Adam Jensen a year ago

Related Problems

Show that ddx(arcsinx)=x1x2\frac{d}{dx}(\arcsin{x}) = \frac{x^{\prime}}{\sqrt{1 - x^2}}

Determine the derivative of the following inverse trig function

f(x)=arctan(x)f(x) = \arctan{(\sqrt{x})}

Determine the derivative of the inverse trigonometric function

f(x)=sec1(5x)f(x) = \sec^{-1}{(5x)}

Find the derivative of sinh(x)\sinh{(x)} and cosh(x)\cosh{(x)}