Skip to Content

Inverse Trigonometric Derivatives

Home | Calculus 1 | Inverse and Hyperbolic Trig Derivatives | Inverse Trigonometric Derivatives

Determine the derivative of the inverse trigonometric function

f(x)=sec1(5x)f(x) = \sec^{-1}{(5x)}

Posted by Will Lynch a year ago

Related Problems

Show that ddx(arcsinx)=x1x2\frac{d}{dx}(\arcsin{x}) = \frac{x^{\prime}}{\sqrt{1 - x^2}}

Determine the derivative of the following inverse trig function

f(x)=arctan(x)f(x) = \arctan{(\sqrt{x})}

Find the derivative of f(x)=2arccos(x3)f(x) = 2\arccos{(\frac{x}{3})}

Determine the derivative of f(t)=sin(arccos(t))f(t) = \sin{(\arccos{(t)})}