Expression Add Operators
Given a string num that contains only digits and an integer target, return all possibilities to insert the binary operators '+', '-', and/or '*' between the digits of num so that the resultant expression evaluates to the target value.
Note that operands in the returned expressions should not contain leading zeros.
public class Solution {
public List<String> addOperators(String num, int target) {
List<String> rst = new ArrayList<String>();
if(num == null || num.length() == 0) return rst;
helper(rst, "", num, target, 0, 0, 0);
return rst;
}
public void helper(List<String> rst, String path, String num, int target, int pos, long eval, long multed){
if(pos == num.length()){
if(target == eval)
rst.add(path);
return;
}
for(int i = pos; i < num.length(); i++){
if(i != pos && num.charAt(pos) == '0') break;
long cur = Long.parseLong(num.substring(pos, i + 1));
if(pos == 0){
helper(rst, path + cur, num, target, i + 1, cur, cur);
}
else{
helper(rst, path + "+" + cur, num, target, i + 1, eval + cur , cur);
helper(rst, path + "-" + cur, num, target, i + 1, eval -cur, -cur);
helper(rst, path + "*" + cur, num, target, i + 1, eval - multed + multed * cur, multed * cur );
}
}
}
}
Related Problems
Given a function fn, return a curried version of that function.
A curried function is a function that accepts fewer or an equal number of parameters as the original function and returns either another curried function or the same value the original function would have returned.
In practical terms, if you called the original function like sum(1,2,3), you would call the curried version like csum(1)(2)(3), csum(1)(2,3), csum(1,2)(3), or csum(1,2,3). All these methods of calling the curried function should return the same value as the original.
The Hamming Distance between two integers is the number of positions at which the corresponding bits are different.
Given two integers x and y, return the Hamming distance between them.
Given an integer x, return true if x is a palindrome, and false otherwise.
Given an unsorted integer array nums. Return the smallest positive integer that is not present in nums.
You must implement an algorithm that runs in O(n) time and uses O(1) auxiliary space.