Evaluate the following limit
limx→0sin(3x)sin(4x)\lim_{x\rightarrow 0} \frac{\sin{(3x)}}{\sin{(4x)}}limx→0sin(4x)sin(3x)
Use l'Hospital's Rule to find the following limit
limx→1xa−1xb−1\lim_{x\rightarrow 1} \frac{x^a - 1}{x^b - 1}limx→1xb−1xa−1
Compute the following limit
limx→0sin(5x)x\lim_{x\rightarrow 0} \frac{\sin{(5x)}}{x}limx→0xsin(5x)
Use l'Hospital's Rule to find the limit
limx→0x2−6x+2x+1\lim_{x\rightarrow 0} \frac{x^2 - 6x + 2}{x + 1}limx→0x+1x2−6x+2
limx→∞ln(1+e3x)2x+5\lim_{x\rightarrow \infty} \frac{\ln{(1 + e^{3x})}}{2x + 5}limx→∞2x+5ln(1+e3x)