The following initial rate data was collected for the reaction, 2 NO + O2 _2 2 ⟶ \longrightarrow ⟶ 2NO2 _2 2
[NO2 _2 2 ]X ^X X [O2 _2 2 ]Y ^Y Y
The following initial rate data was collected for the reaction, CH3 _3 3 Br + OH− ^- − ⟶ \longrightarrow ⟶ CH3 _3 3 OH + Br− ^- −
B. What is the rate constant?
The following initial rate data was collected for the reaction, A + B + C ⟶ \longrightarrow ⟶ products
What are the reaction orders with respect to the reactants?
A ⟶ \longrightarrow ⟶ products
t1 2 _\frac{1}{2} 2 1 = 180s
A. What % of A is left unreacted at 900 s?
B. What is the rate at [A] = 0.50 M?
The half life of uranium-238 is 4.51 x 109 ^9 9 years. What is the rate constant? How much uranium-238 is left after 4 half lives if we start with 64 mg?
A first order reaction has a half life of 20.0 min.
A. Calculate the rate constant for this reaction
B. How much time is required for this reaction to be 75% complete?
Below is a proposed mechanism for a reaction, with k2 > k1. What is the rate law?
N O 2 + C O → k 1 N O + N O 3 NO_2 + CO~ \xrightarrow{k_1}~ NO + NO_3 N O 2 + CO k 1 NO + N O 3
N O 3 + C O → k 2 N O 2 + C O 2 NO_3 + CO~ \xrightarrow{k_2}~ NO_2 + CO_2 N O 3 + CO k 2 N O 2 + C O 2
Below is a proposed mechanism for a reaction, with k1 > k2. What is the rate law?
N O 2 + C O → k 1 N O + N O 3 NO_2 + CO~ \xrightarrow{k_1}~ NO + NO_3 N O 2 + CO k 1 NO + N O 3
N O 3 + C O → k 2 N O 2 + C O 2 NO_3 + CO~ \xrightarrow{k_2}~ NO_2 + CO_2 N O 3 + CO k 2 N O 2 + C O 2
Below is a proposed mechanism for a reaction, with k1 > k2. What is the rate law?
N O + B r 2 ⇋ k − 1 k 1 N O B r 2 NO+ Br_2~ \mathop{\leftrightharpoons}^{k_1}_{k_{-1}}~ NOBr_2 NO + B r 2 ⇋ k − 1 k 1 NOB r 2
N O B r 2 + N O → k 2 N O B r + N O B r NOBr_2 + NO~ \xrightarrow{k_2}~ NOBr + NOBr NOB r 2 + NO k 2 NOB r + NOB r
For the mechanism proposed below, use the quasi (pseudo) steady state approximation to determine the overall rate law assuming the pseudo steady state.
2 N O + 2 H 2 ⟶ 2 H 2 O + N 2 o v e r a l l 2~NO~+~2 H_2~\longrightarrow~2~H_2O~+~N_2~~{overall} 2 NO + 2 H 2 ⟶ 2 H 2 O + N 2 o v er a ll
2 N O + H 2 ⇋ k − 1 k 1 N 2 O + H 2 O 2~NO+~H_2~\mathop{\leftrightharpoons}^{k_1}_{k_{-1}}~N_2O~+~H_2O 2 NO + H 2 ⇋ k − 1 k 1 N 2 O + H 2 O
N 2 O + H 2 → k 2 N 2 + H 2 O N_2O~+~H_2~\xrightarrow{k_2}~N_2~+~H_2O N 2 O + H 2 k 2 N 2 + H 2 O
Use the pseudo steady state hypothesis to derive the rate law for the rate of production of P
E + S ⇋ k − 1 k 1 E S E~+~S~\mathop{\leftrightharpoons}^{k_1}_{k_{-1}}~ES E + S ⇋ k − 1 k 1 ES
E S → k 2 E + P ES~\xrightarrow{k_2}~E~+P ES k 2 E + P
Derive the rate law for the following reaction mechanism
O C l − H 2 O ⇋ H O C l + O H − OCl^-~H_2O~\leftrightharpoons~HOCl + OH^- OC l − H 2 O ⇋ H OCl + O H −
I − + H O C l ⟶ H O I + C l − s l o w s t e p I^- + HOCl~\longrightarrow~HOI + Cl^-~~{slow step} I − + H OCl ⟶ H O I + C l − s l o w s t e p
H O + O H − ⟶ H 2 O + O I − HO + OH^-\longrightarrow~H_2O + OI^- H O + O H − ⟶ H 2 O + O I −