Skip to Content

Calculus 3: Dot and cross product

Calculate the dot product of vectors a=(2,3)\mathbf{a} = (2, 3) and b=(5,4)\mathbf{b} = (5, -4).

Calculate the dot product of vectors a=(3,4,7)\mathbf{a} = (3, -4, 7) and b=(5,2,3)\mathbf{b} = (5, 2, -3).

Calculate the dot product of aa and bb times vector aa, where a=(2,3)\mathbf{a} = (2, 3) and b=(5,4)\mathbf{b} = (5, -4).

Calculate the dot product between vector bb and 3a3a, where a=(2,3)\mathbf{a} = (2, 3) and b=(5,4)\mathbf{b} = (5, -4).

Given the magnitudes of vectors a\mathbf{a} and b\mathbf{b} as 15 and 10 respectively, and the angle between them is 30 degrees, calculate the dot product of the two vectors.

Find the cross product of vectors a\mathbf{a} and b\mathbf{b}, where a=5i4j+3k\mathbf{a} = 5 \mathbf{i} - 4 \mathbf{j} + 3 \mathbf{k} and b=7i+2j8k\mathbf{b} = -7 \mathbf{i} + 2 \mathbf{j} - 8 \mathbf{k}.

Compute the dot product of vectors u=(3,12)\mathbf{u} = (3, 12) and v=(4,3)\mathbf{v} = (-4, 3).

Compute the dot product of vector u=(3,12)\mathbf{u} = (3, 12) with itself.

Calculate (uv)v(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{v}.

Find w1w_1, the projection of u\mathbf{u} onto v\mathbf{v}, where u=(3,5)\mathbf{u} = (3, 5) and v=(2,4)\mathbf{v} = (2, 4).